10 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Циркуляция подъемная сила эффект магнуса. Турбопаруса ведут корабли благодаря эффекту магнуса

Турбопаруса ведут корабли благодаря эффекту Магнуса

Турбопарус – это судовой движитель роторного типа, который создает тягу из энергии ветра благодаря физическому явлению, известному как эффект Магнуса.

Эффект магнуса

Турбопарус действует на основе физического процесса, возникающего при обтекании вращающегося цилиндрического или круглого тела потоком жидкости или газа и известного как эффект Магнуса. Явление получило свое название от фамилии прусского ученого Генриха Магнуса, описавшего его в 1853 году.

Представим себе шар или цилиндр, которые вращаются в омывающем их потоке газа или жидкости. При этом цилиндрическое тело должно вращаться вдоль своей продольной оси. Во время этого процесса возникает сила, вектор которой перпендикулярен направлению потока. Отчего это происходит? На той стороне тела, где направление вращения и вектор движения потока совпадают, скорость воздушной или жидкой среды повышается, а давление, в соответствии с законом Бернулли, понижается. На противоположной стороне тела, где векторы вращения и потока разнонаправлены, скорость движения среды уменьшается, как бы тормозится, а давление нарастает. Возникающая на противоположных сторонах вращающегося тела разность давлений и порождает поперечную силу. В аэродинамике она известна как подъемная сила, удерживающая в полете аппараты тяжелее воздуха. В случае же с роторными парусами, это сила с вектором, перпендикулярным направлению воздействия ветра на установленный вертикально на палубе и вращающийся вдоль продольной оси ротор-парус.

Вращающиеся паруса Флеттнера

Описанное физическое явление использовал немецкий инженер Антон Флеттнер при создании нового типа судового двигателя. Его роторный парус имел вид вращающихся цилиндрических ветросиловых башен. В 1922 г. изобретатель получил патент на свое устройство, и в 1924 г. первый в истории роторный корабль – переоборудованная шхуна «Букау» сошел со стапелей.
Турбопаруса «Букау» приводились в движение от электродвигателей. С той стороны, где поверхность ротора вращалась навстречу ветру, в соответствии с эффектом Магнуса, создавалась область повышенного давления, а с противоположной стороны — пониженного. В результате возникала тяга, которая и двигала судно при условии наличия бокового ветра. Сверху на роторы-цилиндры Флеттнер поставил плоские тарелки для лучшей ориентации потоков воздуха вокруг цилиндра. Это позволило в два раза увеличить движущую силу. Вращающийся полый металлический цилиндр-ротор, использующий эффект Магнуса для создания боковой тяги, впоследствии был назван в честь своего создателя.

На испытаниях турбопаруса Флеттнера показали себя превосходно. В отличие от обычного парусника, сильный боковой ветер только улучшал ходовые качества экспериментального судна. Два цилиндрических ротора позволяли лучше сбалансировать судно. При этом, изменив направление вращения роторов, можно было изменить движение судна вперед или назад. Разумеется, самым выгодным направлением ветра для создания тяги являлось строго перпендикулярное к продольной оси судна.

Турбопарус от Кусто

Парусники строились в XX столетии, строятся и в XXI. Современные паруса изготавливаются из более легких и прочных синтетических материалов, а парусное вооружение быстро сворачивают электромоторы, освобождая человека от физической работы.

Однако идея принципиально новой системы, использующей для создания тяги судна энергию ветра, витала в воздухе. Ее подхватил французский исследователь и изобретатель Жак-Ив Кусто. Ему как океанографу очень импонировало использование в качестве тяги ветра — бесплатного, возобновляемого и абсолютно экологически чистого источника энергии. В начале 1980-х он приступил к работе над созданием таких движителей для современного судна. За основу он взял турбопаруса Флеттнера, но значительно модернизировал систему, усложнив, но, в тоже время, повысив ее эффективность.

Читать еще:  Дохлая лошадь сонник. Умирающая лошадь

Чем же отличается турбопарус Кусто от движителей Флеттнера? Конструкция Кусто представляет собой вертикально установленную полую металлическую трубу, имеющую аэродинамический профиль и действующую по тому же принципу, что крыло самолёта. В поперечном сечении труба имеет каплевидную или яйцеобразную форму. По бокам ее расположены воздухозаборные решетки, через которые посредством системы насосов нагнетается воздух. А дальше в игру вступает эффект Магнуса. Завихрения воздуха создают внутри и снаружи паруса разницу давлений. У одной стороны трубы создается разрежение, у другой – уплотнение. В результате возникает поперечная сила, которая и заставляет судно двигаться. По сути турбопарус — это установленное вертикально аэродинамическое крыло: с одной его стороны воздух протекает медленнее, чем с другой, создавая разность давлений и поперечную тягу. По аналогичному принципу создается подъемная сила на самолете. Турбопарус снабжен автоматическими датчиками и смонтирован на поворотной платформе, которая управляется компьютером. Умная машина располагает ротор с учетом ветра и задает давление воздуха в системе.

Впервые Кусто испытал прототип своего турбопаруса в 1981 году на катамаране «Moulin à Vent» в ходе плавания через Атлантический океан. Во время путешествия катамаран для безопасности сопровождал более крупный корабль экспедиции. Экспериментальный турбопарус давал тягу, но меньше, чем традиционные паруса и моторы. Кроме того, к концу путешествия сварочные швы вследствие усталости металла лопнули под напором ветра, и конструкция упала в воду. Тем не менее, сама идея подтвердилась, и Кусто с коллегами сосредоточились на разработке более крупного роторного судна – «Алсион». Оно было спущено на воду в 1985 г. Турбопаруса на ней являются дополнением к агрегации из двух дизелей и нескольких винтов и позволяют на треть экономить расход горючего. Даже спустя 20 лет после смерти своего создателя, «Алсион» все еще на ходу и остается флагманом флотилии Кусто.

Турбопарус против крыльев из парусины

Даже в сравнении с лучшими современными парусами, турбопарус-ротор обеспечивает в 4 раза больший коэффициент тяги. В отличие от парусника, сильный боковой ветер не только не страшен роторному судну, но наиболее выгоден для его хода. Оно неплохо двигается даже при встречном ветре под углом 250. Вместе с тем, судно на традиционных парусах больше всего «любит» попутный ветер.

Выводы и перспективы

Сейчас точные аналоги парусов Флеттнера установлены в качестве вспомогательных движителей на немецком грузовом судне «E-Ship-1». А также их усовершенствованная модель используется на яхте «Алсион», принадлежащей фонду Жака-Ива Кусто.
Таким образом, в настоящее время существует два типа движителей системы Турбопарус. Обычный роторный парус, изобретенный Флеттнером в начале XX в., и его модернизированная версия от Жака-Ива Кусто. В первой модели результирующая сила возникает снаружи вращающихся цилиндров; во втором более сложном варианте электронасосы создают разницу давления воздуха внутри полой трубы.

Первый турбопарус способен давать ход судну лишь при боковом ветре. Именно по этой причине турбопаруса Флеттнера не получили распространения в мировом судостроении. Конструктивная особенность турбопаруса от Кусто позволяет получить движущую силу независимо от направления ветра. Оборудованное такими движителями судно может плыть даже против ветра, что является неоспоримым преимуществом как над обычными парусами, так и над роторными. Но, даже несмотря на эти достоинства, система Кусто также не введена в производство.

Нельзя сказать, что в наши дни не предпринимаются попытки воплотить в жизнь идею Флеттнера. Имеется ряд любительских проектов. В 2010 году было построено третье в истории после «Букау» и «Алсион» судно с роторными парусами – 130-метровый немецкий грузовик класса Ro-Lo. Двигательная система судна представлена двумя парами вращающихся роторов и сцепкой из дизелей на случай штиля и для создания дополнительной тяги. Роторные паруса играют роль вспомогательных двигателей: для судна водоизмещением 10,5 тысяч тонн четырех ветросиловых башен на палубе недостаточно. Тем не менее, эти устройства позволяют сэкономить до 40% топлива на каждом рейсе.
А вот система Кусто несправедливо предана забвению, хотя экономическая целесообразность проекта была доказана. На сегодняшний день «Алсион» — единственный полноценный корабль с таким типом движителя. Представляется неясным, почему система не используется в коммерческих целях, в частности на грузовых судах, ведь она позволяет экономить до 30% дизельного горючего, т.е. деньги.

Читать еще:  Мандарины для похудения вечером. Эффективны ли мандарины для похудения

Что такое эффект Магнуса и как он работает в спорте, альтернативной энергетике и кораблестроении?

Немногим известно, что такое Эффект Магнуса, но зато каждому футбольному болельщику или поклоннику тенниса знакома ситуация, когда мяч в полете движется не по прямой, а по какой-то другой невероятной траектории. Такие «крученые» мячи смотрятся очень эффектно и вызывают шквал эмоций на трибунах болельщиков.

Из-за чего мячи в полете ведут себя таким невероятным образом и в каких перспективных разработках используется эффект Магнуса мы расскажем в этой статье.

Впервые на это явление люди обратили внимание много лет назад, когда, вылетая из дула пушки, ядра необъяснимым образом отклонялись от прямой траектории. В 1742 году Б. Роббинсоном было выдвинута версия, что такое поведение пушечных снарядов было связано с их вращением во время полета.

Этот эффект в 1853 году впервые был описан известным немецким химиком и физиком Густавом Магнусом после изучения траекторий артиллерийских снарядов: поток воздуха, движущийся навстречу вращающимся снарядам создавал подъемную силу, которая отклоняла снаряды от прицельной линии.

В спорте этот эффект проявляется в том, что вокруг закрученного в броске или ударе мяча образуются вихревые потоки воздуха. Из-за этого по одну сторону мяча направление движения воздуха соответствует направлению встречного потока, а по обратную сторону мяча направление вихря противоположно встречному потоку. В результате возникают поперечно действующие силы, изменяющие траекторию.

Действие эффекта Магнуса отлично продемонстрировано в ролике:

Авторами видео из Австралии с дамбы был брошен баскетбольный мяч, во время броска ему придали небольшое вращение. Во время падения мяча в какой-то момент начинает казаться, что мяч начинает лететь горизонтально.

Турбопаруса — движители на основе эффекта Магнуса

Инженер-изобретатель А. Флеттнер из Германии в 1924г. успешно провел первые испытания роторных турбопарусов, принципы работы которых основаны на эффекте Магнуса.

Благодаря своей конструкции, турбопарус, при его использовании, постоянно дает движущую силу в необходимом направлении, а направление ветра не имеет никакого значения.

С такими турбопарусами корабли могут двигаться и против ветра за счет разницы давлений снаружи и внутри турбопаруса, а их коэффициент тяги приблизительно в 4 раза выше по сравнению с лучшими из традиционных парусов. К таким выводам пришла команда инженеров Жака-Ива Кусто после испытаний на судне «Алсион» в 1980-х годах.

На данный момент самый масштабный в проект в этой сфере реализовала компания Maerks, специализирующаяся морских грузоперевозках. 245-ти метровый танкер, принадлежащий MAersk оборудовали 2-мя роторными турбопарусами высотой тридцать метров каждый. По предварительным расчетам специалистов компании такая модернизация позволит снизить потребление топлива судном до 10 %.

Эффект Магнуса и альтернативные источники энергии

Лопастные ветрогенераторные энергоустановки, которые широко используются по всему миру малоэффективны и нестабильно работают при слабом ветре. По этой причине интерес представляют перспективные разработки ветрогенераторов, использующих эффект Магнуса.

Такие роторные установки вместо привычных лопастей оборудованы цилиндрами, которые вращаются по продольной оси. Такая конструкция может эффективно работать даже при скоростях ветра 2–4 м/с и снабжать теплом и светом целый поселок.

Если Вам понравилась статья , поставьте лайк и подпишитесь на канал НАУЧПОП . Оставайтесь с нами, друзья! Впереди ждёт много интересного!

§ 191. Эффект Магиуса и циркуляция

В предыдущем параграфе мы рассмотрели силу, возникающую при обтекании тела потоком, — силу сопротивления воздуха, направленную по скорости потока. Однако так бывает только в тех случаях, когда обтекаемое тело вполне симметрично относительно потока. Если же тело несимметрично по форме или несимметрично расположено относительно потока, то сила, действующая на тело, направлена под углом к потоку.

Читать еще:  Подъем Неба и Поддерживание Луны. Цигун

Такова, например, сила, действующая на крыло летящего горизонтально самолета со стороны встречного потока воздуха. На рис. 341 показан разрез («профиль») крыла и действующая на него сила . Эта сила направлена под большим углом к горизонту. Ее можно разложить на две составляющие: вертикальную и горизонтальную . Вертикальную составляющую (перпендикулярную к направлению потока) называют подъемной силой. Именно благодаря возникновению подъемной силы при обтекании тел оказалось возможным создание летательных аппаратов тяжелее воздуха: подъемная сила поддерживает самолет в воздухе. Горизонтальную составляющую, направленную по потоку, называют силой лобового сопротивления. Возникновение лобового сопротивления нами уже разобрано. Теперь мы должны пояснить, каким образом возникает подъемная сила, направленная перпендикулярно к потоку. Для этого мы сначала рассмотрим обтекание вращающегося цилиндра равномерным потоком воздуха (рис. 342). В этом случае движение воздуха сравнительно просто и направление сил легко определить.

Рис. 341. Разложение силы , действующей на крыло самолета, на подъемную силу и лобовое сопротивление

Рис. 342. При вращении цилиндра скорость увлекаемого воздуха с одной стороны складывается со скоростью потока (вверху), а с другой — вычитается (внизу)

При своем вращении цилиндр увлекает прилегающие слои воздуха; в результате окружающий воздух получает, кроме поступательного движения, еще и вращение вокруг цилиндра. В тех местах, где скорости поступательного и вращательного движений складываются, результирующая скорость воздуха превосходит скорость потока, набегающего на цилиндр; с противоположной стороны цилиндра скорости вычитаются и результирующая скорость меньше, чем скорость потока вдали от цилиндра.

Рис. 343 изображает получающееся распределение линий тока. Там, где скорость больше, линии тока расположены гуще. Но из закона Бернулли мы знаем, что в тех местах, где скорость больше, давление понижено, и наоборот. Следовательно, с двух сторон на цилиндр действуют неравные силы; их результирующая, направленная перпендикулярно к потоку, и является подъемной силой.

Рис. 343. Линии тока проведены гуще с той стороны вращающегося цилиндра, где скорость потока больше; давление с этой стороны меньше

Подъемная сила, перпендикулярная к потоку, возникает при вращении не только цилиндра, но и любого другого тела. Возникновение силы, перпендикулярной к потоку, при обтекании вращающегося тела называется эффектом Магнуса. Эффект Магнуса был впервые обнаружен при изучении полета вращающихся артиллерийских снарядов: подъемная сила, действующая со стороны встречного потока воздуха, отклоняет снаряд от линии прицела; это отклонение должно быть учтено при точной стрельбе. В меньшем масштабе эффект Магнуса можно наблюдать на летящем футбольном или теннисном мяче, который отклоняется в сторону, если при ударе он получил вращение.

Эффект Магнуса можно легко обнаружить при помощи опыта, изображенного на рис. 344. Легкий бумажный цилиндр, скатываясь с наклонной доски, отклоняется при падении от обычной траектории (штриховая линия) и движется по более крутой линии (сплошная линия). Встречный поток воздуха направлен относительно цилиндра вверх, а цилиндр вращается по часовой стрелке; поэтому возникающая подъемная сила направлена справа налево.

Рис. 344. Эффект Магнуса на падающем вращающемся цилиндре

Возникновение подъемной силы связано с наличием кругового движения потока воздуха около обтекаемого тела; это круговое движение, налагаясь на общий поток, создает разницу в скоростях потока с двух сторон тела, благодаря чему и создается разность давлений, обусловливающая подъемную силу. Круговое движение потока вокруг тела называется циркуляцией. В эффекте Магнуса циркуляция, а следовательно, и подъемная сила возникают благодаря вращению цилиндра. В других случаях циркуляция может быть вызвана не вращением тела, а иными причинами. Для возникновения подъемной силы важно только, чтобы поток, обтекающий тело, имел циркуляцию. Тогда распределение скоростей всегда будет такое, что образующаяся разность давлений создаст силу, направленную перпендикулярно к потоку.

Источники:

http://ekoenergia.ru/energiya-vetra/turboparus-i-effekt-magnusa.html
http://zen.yandex.ru/media/id/5af18cff8c8be36795a8504e/5bbcdbfac4487100abab98a4
http://sfiz.ru/uchebnik/uch_mehanika/uch_gidrodinamik/191-effekt-magiusa-i-cirkulyaciya

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector
×
×